

KOR-1 C-0 G-1

2021년 국제화학올림피아드, 일본 제 53회 IChO2021, 일본 2021년 7월 25일 - 8월 2일 https://www.icho2021.org

지시사항

- 답안지는 펜으로만 쓰시오.
- 프로그램 불가능한 계산기만 사용하시오.
- 이 시험은 9 문제로 이루어져 있다.
- 시험은 순서에 상관없이 풀 수 있다.
- 시험 시간은 **5 시간**이다.
- 시작하라라는 지시가 있은 뒤 시작하시오.
- 모든 결과는 **답안지**의 지정된 상자 안에 적절하게 펜으로 써야 한다. 연습지가 필요하면 시험지의 뒷면을 사용하 시오. 답안지의 상자 밖에 쓰인 답은 채점하지 않는다는 점을 명심하시오.
- 필요한 경우 관련된 계산을 적절한 상자 안에 쓰시오. 풀이가 있어야 정답에 대해 만점을 줄 수 있다.
- 감독관은 시험 종료 30분 전에 공지한다.
- 시험을 중지하라는 말을 들으면 즉시 멈추어야 한다. 멈추지 않으면 시험에서 실격한다.
- 번역이 불분명한 경우 이 시험의 공식 영어 버전을 요청하여 볼 수 있다.
- 허락없이 시험 장소를 떠날 수 없다. 도움이 필요한 경우 (계산기 고장, 화장실 사용 등) 손을 들고 감독관이 올 때까지 기다리시오.

행운을 빕니다!

문제와	배점	정보	

	제목	배점	총점의 %
1	금속 표면 위의 수소	24	11
2	동위원소 타임 캡슐	35	11
3	Lambert–Beer 법칙	22	8
4	아연(Zn)의 산화환원 화학	32	11
5	신비한 규소	60	12
6	전이 금속의 고체 화학	45	13
7	비-벤젠류 방향족성 탐구하기	36	13
8	다이내믹한 유기 분자들의 카이랄성	26	11
9	캡슐을 좋아하는 것과 싫어하는 것	23	10
		총점	100

물리적 상수와 공식

상수

진공에서 빛의 속도	$c = 2.99792458 \times 10^8 \mathrm{m \ s^{-1}}$
플랑크 상수	$h = 6.62607015 \times 10^{-34} \text{ J s}$
기본 전하량	$e = 1.602176634 \times 10^{-19}\mathrm{C}$
전자 질량	$m_{\rm e} = 9.10938370 \times 10^{-31} {\rm kg}$
전기 상수 (진공 유전율)	$\varepsilon_0 = 8.85418781 \times 10^{-12} \mathrm{F} \mathrm{m}^{-1}$
아보가드로 수	$N_{\rm A} = 6.02214076 imes 10^{23} { m mol}^{-1}$
볼츠만 상수	$k_{\rm B} = 1.380649 \times 10^{-23} ~{\rm J}~{\rm K}^{-1}$
패러데이 상수	$F = N_{\rm A} \times e = 9.64853321233100184 \times 10^4 {\rm C} {\rm mol}^{-1}$
기체 사스	$R = N_{\rm A} imes k_{\rm B} = 8.31446261815324 \ {\rm J} \ {\rm K}^{-1} {\rm mol}^{-1}$
	$= 8.2057366081 imes 10^{-2} { m L} { m atm} { m K}^{-1} { m mol}^{-1}$
통합 원자 질량 단위	$u = 1 \text{ Da} = 1.66053907 \times 10^{-27} \text{ kg}$
표준 압력	$p = 1 \operatorname{bar} = 10^5 \operatorname{Pa}$
대기압	$p_{atm} = 1.01325 imes 10^5 Pa$
섭씨 0도	$0^\circ\mathrm{C}=273.15\mathrm{K}$
옹스트롬(Ångstrom)	$1 \text{ Å} = 10^{-10} \text{ m}$
피코미터	$1 \mathrm{pm} = 10^{-12} \mathrm{m}$
전자볼트	$1 \mathrm{eV} = 1.602176634 \times 10^{-19} \mathrm{J}$
ppm	$1 ppm = 10^{-6}$
ppb	$1 ppb = 10^{-9}$
ppt	$1 \text{ppt} = 10^{-12}$
파이	$\pi = 3.141592653589793$
자연로그의 밑 (오일러 수)	e = 2.718281828459045

공식

이상기체 방정식	PV = nRT
	여기서 P 는 압력, V 는 부피, n 는 물질의 양, T 는 절대온도이다.
쿨롱의 법칙	$F = k_{e} \frac{q_1 q_2}{r^2}$
	여기서 F 는 정전기적 힘, $k_{ m e}(\simeq 9.0 imes 10^9$ N m 2 C $^{-2}$)는 쿨롱 상수, q_1 과 q_2 는 전하의 크기, r 은 전하간 거리이다.
열역학 제 1법칙	$\Delta U=q+w$ 여기서 ΔU 는 내부에너지 변화, q 는 공급된 열, w 는 수행한 일이다.
엔탈피 <i>H</i>	H = U + PV
볼츠만 원리에 기초한 엔트 로피 <i>S</i>	$S = k_{\sf B} \ln W$ 여기서 W 는 미세상태(microstates)의 개수이다.
엔트로피 변화 ΔS	$\Delta S = \frac{q_{\text{rev}}}{T}$
	여기서 q_{rev}^{I} 는 가역과정에서의 열이다.
깁스 자유에너지 <i>G</i>	G = H - TS
	$\Delta_{\mathbf{r}}G^{\circ} = -RT\ln K = -zFE^{\circ}$
	여기서 K 는 평형상수, z 는 전자 수, E °는 표순전극전위이다.
반응 지수 Q	$\Delta_{\rm r}G = \Delta_{\rm r}G^\circ + RT\ln Q$
	반응식 $aA + bB \rightleftharpoons cC + dD에서$
	$Q = \frac{ U D }{a^{-h}}$
	$[A]^{a}[B]^{v}$
	여기서 [A]는 A의 농노.

열 변화 Δq	$\Delta q = n c_{m} \Delta T$
	여기서 c_{m} 는 온도에 무관한 몰 열용량이다.
산화환원 반응의 네른스트	$E = E^{\circ} + rac{RT}{zF} \ln rac{C_{ox}}{C_{rod}}$
4	여기서 C_{ox} 는 산화된 물질의 농도, C_{red} 는 환원된 물질의 농도이다.
아레니우스 식	$k = A \exp\left(-\frac{E_a}{RT}\right)$
	$exp(x) = e^x$ 여기서 k 는 속도상수, A 는 지수앞인자(pre-exponential factor), E_a 는 활성화에너 지이다.
Lambert-Beer 식	$A = \varepsilon lc$
	여기서 A 는 읍광노, $arepsilon$ 는 몰읍광계수, l 은 광 경로길이, c 는 용액의 동노이다.
Henderson–Hasselbalch	산해리 반응 HA \rightleftharpoons H $^+$ + A $^-$ 에서 평형상수가 $K_{ m a}$ 일 때,
식	$pH = pK_{a} + log\left(\frac{[A^-]}{[HA]}\right)$
광자의 에너지	$E = h\nu = h\frac{c}{\lambda}$
	여기서 $ u$ 는 빛의 진동수, λ 는 빛의 파장이다.
기하 급수의 합	$x \neq 1$ 일 때, $1 + x + x^2 + \dots + x^n = \sum_{i=0}^n x^i = \frac{1 - x^{n+1}}{1 - x}$
문제를 풀 때 사용할 수 있는 근사식	$x \ll 1$ 일 때, $\frac{1}{1-x} \simeq 1+x$

KOR-1 C-0 G-6

주기율 표

-		_	_	_	_	_		-	_		-	_	_	_	_	_		-	_								
18	² He Helium 4.003	ot Na	Neon	20.180	18	Ar	Argon 39.948	36	Ϋ́	Krypton 83.798	54	Xe	Xenon	131.293	86	Вn	Radon [222]	118	og	Oganesson [294]							
17		₀ Ц	Fluorine	18.998	17	ö	Chlorine 35.452	35	Ъ	Bromine 79.904	53	_	lodine	126.904	85	At	Astatine [210]	117	Ts	Tennessine [293]	71	Γn	Lutetium	1/4.30/	103	۲	Lawrencium [262]
16		∞ C	Oxygen	15.999	16	ა	sulfur 32.068	34	Se	Selenium 78.971	52	Те	Tellurium	127.60	84	Ро	Polonium [210]	116	2	Livermorium [293]	70	Υb	Ytterbium	0.001	102	٩	Nobelium [259]
15		⊳ Z	Nitrogen	14.007	15	٩.	Phosphorus 30.974	33	As	Arsenic 74.922	51	Sb	Antimony	121.760	83	Bi	Bismuth 208.98	115	Mc	Moscovium [289]	69	Tm	Thulium	100.304	101	рМ	Mendelevium [258]
14		• د	Carbon	12.011	14	Si	Silicon 28.085	32	Ge	Germanium 72.630	50	Sn	Tin	118.710	82	Pb	Lead 207.2	114	Ē	Flerovium [289]	68	ш	Erbium	607.101	100	Ел	Fermium [257]
13		۵ م	Boron	10.814	13	A	Aluminium 26.982	31	Ga	Gallium 69.723	49	Ľ	Indium	114.818	81	F	Thallium 204.384	113	ЧN	Nihonium [278]	67	Р	Holmium	104.300	66	Ës	Einsteinium [252]
12								30	Zn	^{Zinc} 65.38	48	В	Cadmium	112.414	80	Рg	Mercury 200.592	112	ü	Copernicium [285]	99	Ŋ	Dysprosium	000.201	98	ŭ	Californium [252]
11				active element]				29	С	Copper 63.546	47	Ag	Silver	107.868	62	Au	Gold 196.967	111	Вg	Roentgenium [280]	65	τp	Terbium	130.323	97	番	Berkelium [247]
10				s for the radios				28	ïZ	Nickel 58.693	46	Ъd	Palladium	106.42	78	Ŧ	Platinum 195.084	110	Ds	Darmstadtium [281]	64	Gd	Gadolinium	67.101	96	СШ	Curium [247]
6				[in parenthesi				27	ပိ	Cobalt 58.933	45	ЧЧ	Rhodium	102.906	22	<u> </u>	Iridium 192.217	109	Mt	Meitnerium [276]	63	Eu	Europium	106.101	95	Am	Americium [243]
8		atomic number	name	atomic weight				26	Fe	lron 55.845	44	Ru	Ruthenium	101.07	76	So	^{Osmium} 190.23	108	Hs	Hassium [277]	62	Sm	Samarium	00.001	94	Pu	Plutonium [239]
7	Key:	113 Nh	Nihonium	[278]				25	Mn	Manganese 54.938	43	Tc	Technetium	[66]	75	Re	Rhenium 186.207	107	Bh	Bohrium [272]	61	Pm	Promethium	[0+1]	93	dN	Neptunium [237]
9								24	ບັ	Chromium 51.996	42	Мо	Molybdenum	95.95	74	≥	Tungsten 183.84	106	Sg	Seaborgium [271]	60	ΡŊ	Neodymium	144.242	92	⊃	Uranium 238.029
5								23	>	Vanadium 50.942	41	qN	Niobium	92.906	73	Та	Tantalum 180.948	105	Db	Dubnium [268]	59	ŗ	Praseodymium	140.300	91	Pa	Protactinium 231.036
4								22	Ħ	Titanium 47.867	40	Zr	Zirconium	91.224	72	Έ	Hafhium 178.49	104	Ť	Rutherfordium [267]	58	Ce	Cerium	140.110	06	Ч	Thorium 232.038
3								21	Sc	scandium 44.956	39	≻	Yttrium	88.906	57-71	La-Lu	Lanthanoids	89-103	Ac-Lr	Actinoids	57	La		100.900	89	Ac	Actinium [227]
2		₽ d	Beryllium	9.012	12	Mg	Magnesium 24.306	20	Ca	Calcium 40.078	38	S	Strontium	87.62	56	Ba	Barium 137.327	88	Ra	Radium [226]	57-71	La-Lu	Lanthanoids		89-103	Ac-Lr	Actinoids
-	1 Hydrogen 1.008	ε :-	Lithium	6.968	ŧ	Na	22.990	19	×	Potassium 39.098	37	Rb	Rubidium	85.468	55	S	Caesium 132.905	87	Ŀ	Francium [223]							

¹H NMR 화학적 이동값

KOR-1 C-0 G-8

1개의 알킬기 치환에 의한 화학적 이동값 $(\Delta \delta)$: 약 +0.4 ppm

KOR-1 C-1 Q-1

금속 표면 위의 수소

총점의 11%										
문제	A.1	A.2	B.1	B.2	B.3	B.4	합계			
배점	6	4	5	3	3	3	24			
점수										

수소는 화석 연료에 의존하지 않는 미래의 에너지원으로 기대된다. 여기서 우리는 금속에 수소를 저장하는 과정에 대해 생각해 볼 것인데, 이것은 수소 운반 및 저장 기술과 관련이 있다.

파트 A

수소가 금속 표면을 통해 금속의 벌크(bulk, 표면이 아닌 금속의 나머지 대부분)에 흡수될 때, 수소가 금속 표면에 흡착되는 과정 $H_2(g) \rightarrow 2H(ad)$ 을 먼저 생각해 보자. 여기서 기체 상태와 흡착 상태의 수소는 각각 (g)와 (ad)로 나타낸다. 금속 표면(M)에 도달한 수소 분자(H₂)는 표면에서 분해되어 H 원자 상태로 흡착된다 (그림 1). 여기서 H₂의 퍼텐셜 에너지는 두 가지 변수, 원자간 거리 d와 표면 금속 원자에 대한 높이 z로 나타낸다. 두 H 원자 사이를 연결하는 축은 표면에 평행하고 무게 중심은 항상 그림 1의 수직 점선 위에 있는 것으로 가정한다. 그림 2는 표면에서 분해되는 과정의 퍼텐셜 에너지 등고선을 보여준다. 숫자 값들은 퍼텐셜 에너지를 H₂ 몰 당 kJ 단위로 나타낸다. 실선의 간격은 20 kJ mol⁻¹, 파선의 간격은 100 kJ mol⁻¹, 실선과 파선 사이의 간격은 80 kJ mol⁻¹이다. 영점 진동 에너지는 무시한다.

0 -

		6pt									
		(i) 기체상 H ₂ 분자0 (ii) 금속 원자에서 원 (iii) 흡착된 H 원자S	네서 원자간 거리 실자간 거리 (그림 1의 <i>d</i> 라 표면 사이의 거리 (그	_M) 림 1의 h _{ad})							
		A. 0).03 nm B. 0.07 nm	C. 0.11 nm D.	0.15 nm						
		E. ().19 nm F. 0.23 nm	G. 0.27 nm							
	A.2	아래 각 (i)–(ii)에 가	·장 가까운 값을 A-H 중	에서 <u>고르시오</u> .		4pt					
	(i) 기체상 H ₂ 에서 기체상 H로 분해되는데 필요한 에너지 $[H_2(g) \rightarrow 2H(g)]$ (ii) 기체상 H ₂ 가 흡착되면서 방출되는 에너지 $[H_2(g) \rightarrow 2H(ad)]$										
		A 20 k I mol-	-1 B 10 k mol -1	$(60 k l mol^{-1})$	D 100 k mol $^{-1}$						
		E. 150 kJ mo	l^{-1} F. 200 kJ mol ⁻¹	G. 300 kJ mol ⁻¹	H. 400 kJ mol ⁻¹						
		L									

Korean (Korea)

파트 B

반응 (1a)와 (1b)에 나타낸 것처럼, 흡착된 수소 원자들은 벌크로 흡수되거나, 재결합하여 기체상으로 탈착한다. H(ab)는 벌크로 흡수된 수소 원자를 나타낸다.

$$H_2(g) \stackrel{k_1}{\underset{k_2}{\Longrightarrow}} 2H(ad)$$
(1a)

$$H(ad) \xrightarrow{k_3} H(ab)$$
(1b)

표면 위치 하나 당 흡착, 탈착, 흡수되는 반응 속도는 각각 $r_1[s^{-1}], r_2[s^{-1}], r_3[s^{-1}]$ 이고, 다음과 같이 표현된다.

$$r_1 = k_1 P_{\mathsf{H}_2} (1 - \theta)^2 \tag{2}$$

$$r_2 = k_2 \theta^2 \tag{3}$$

$$r_3 = k_3 \theta \tag{4}$$

여기서 $k_1 [s^{-1} Pa^{-1}], k_2 [s^{-1}], k_3 [s^{-1}]$ 는 반응 속도 상수이고, P_{H_2} 는 H_2 의 압력이다. 표면에서 이용가능한 위치 중에서, $\theta (0 \le \theta \le 1)$ 는 H 원자들이 차지하는 분율이다. 흡착과 탈착은 흡수에 비해 빠르고 $(r_1, r_2 \gg r_3), \theta$ 는 일정하다고 가정한다.

> ł: 5pt 3 $r_3 = \frac{k_3}{1+\sqrt{\frac{1}{P_{\mathrm{H_2}}C}}}$ (5) $C = k_1 \stackrel{}{ ext{alg}} k_2 \stackrel{}{ ext{show}} \stackrel{}{ ext{blue}} h \stackrel{}{ ext{show}} h \stackrel{$

KOR-1 C-1 Q-5

표면적 $S = 1.0 \times 10^{-3} \text{ m}^2$ 인 금속 샘플을 H₂($P_{H_2} = 1.0 \times 10^2 \text{ Pa}$)가 들어 있는 용기(1 L = $1.0 \times 10^{-3} \text{ m}^3$)에 집어 넣었다. 표면에서 수소 원자 흡착 위치의 밀도는 $N = 1.3 \times 10^{18} \text{ m}^{-2}$ 이다. 표면 온도 T = 400 K로 유지하였다. 반응 (1)이 진행됨에 따라, P_{H_2} 가 $v = 4.0 \times 10^{-4} \text{ Pa s}^{-1}$ 의 일정한 속도로 감소하였다. H₂는 이상 기체이고, 금속 샘플의 부피는 무시할 수 있다고 가정하시오.

- **B.2** 표면의 단위 면적 당 단위 시간 동안 흡수된 H 원자의 양인 $A [mol s^{-1} m^{-2}] = <u>계산하시오</u>$. 3pt
- **B.3** $T = 400 \text{ KMH}, C = 1.0 \times 10^2 \text{ Pa}^{-1}$ 이다. 400 K에서 k_3 의 값을 <u>계산하시오</u>. **B.2**의 답을 3pt 구하지 못했으면, $A = 3.6 \times 10^{-7} \text{ mol s}^{-1} \text{ m}^{-2}$ 를 사용하시오.
- **B.4** 다른 온도 T에서, $C = 2.5 \times 10^3 \text{ Pa}^{-1} \Omega k_3 = 4.8 \times 10^{-2} \text{ s}^{-1}$ 가 주어졌다. 이 온도에서 3pt $r_3 \equiv P_{\text{H}_2}$ 의 함수로 나타냈을 때, 올바른 그래프를 (a)–(h) 중에서 <u>고르시오</u>.

KOR-1 C-2 Q-1

동위원소 타임 캡슐

총점의 11%									
문제	A.1	A.2	A.3	A.4	합계				
배점	8	8	10	9	35				
점수									

CH₄와 CH₃D처럼 동위원소의 구성만 다른 분자들을 아이소토폴로그(isotopologue)라고 부른다. 아이소토폴로그는 화학적 성질이 같은 것으로 간주한다. 하지만 자연에서는 미세한 차이가 있다.

이 문제에서 나오는 모든 물질은 기체 상태라고 가정하시오.

다음 평형을 생각해 보자:

$${}^{12}\mathsf{C}^{16}\mathsf{O}_2 + {}^{12}\,\mathsf{C}^{18}\mathsf{O}_2 \rightleftharpoons 2^{12}\mathsf{C}^{16}\mathsf{O}^{18}\mathsf{O} \qquad \qquad K = \frac{[{}^{12}\mathsf{C}^{16}\mathsf{O}^{18}\mathsf{O}]^2}{[{}^{12}\mathsf{C}^{16}\mathsf{O}_2][{}^{12}\mathsf{C}^{18}\mathsf{O}_2]} \tag{1}$$

엔트로피 S는 시스템의 가능한 미시적 상태 개수 W가 증가함에 따라 증가한다:

$$S = k_{\mathsf{B}} \ln W \tag{2}$$

 ${}^{12}C^{16}O_{2}$ 와 ${}^{12}C^{18}O_{2}$ 에 대해서 W = 1이다. 반면에, ${}^{12}C^{16}O^{18}O$ 분자에 대해서는 이 분자에서 산소 원자들이 구별 가능 하기 때문에 W = 2이다. 반응식 (1)에 보인 평형의 우변에 2 개의 ${}^{12}C^{16}O^{18}O$ 분자들이 있기 때문에, $W = 2^{2} = 4$ 이다.

Q2-2 Korean (Korea)

A.1
 반응식 (3)의 엔탈피 변화
$$\Delta H$$
는 온도에 관계없이 양의 값을 가진다.
 8pt

 $H_2 + DI \rightleftharpoons HD + HI$
 (3)

 반응식 (3)의 평형 상수 K를 아주 낮은 온도(T \rightarrow 00이라고 생각하자)와 아주 높은 온도 (T \rightarrow +∞라고 생각하자)에서 계산하시오.
 0) 온도들에서 반응은 변하지 않고, 높은 온도에서 ΔH 는 일정한 값으로 수렴한다고 가정 하시오.

다음 과정의 ΔH 는 분자 진동으로 설명할 수 있다.

$$2HD \rightleftharpoons H_2 + D_2$$
 $K = \frac{[H_2][D_2]}{[HD]^2}$ (4)

T = 0 K에서, 진동 주파수가 ν [s⁻¹]인 이원자 분자의 진동 에너지는 다음과 같이 표현된다:

$$E = \frac{1}{2}h\nu\tag{5}$$

$$\nu = \frac{1}{2\pi} \sqrt{\frac{k}{\mu}} \tag{6}$$

여기서 k는 힘 상수이고, 환산 질량 μ 는 이원자 분자의 두 원자의 질량 m_1 과 m_2 를 사용하여 다음과 같이 표현된다.

$$\mu = \frac{m_1 m_2}{m_1 + m_2} \tag{7}$$

A.2 H₂의 진동은 파수로 나타내었을 때 4161.0 cm⁻¹이다. T = 0 K에서 다음 반응식의 $\Delta H = 8$ pt J mol⁻¹ 단위로 <u>계산하시오</u>.

$$2HD \rightarrow H_2 + D_2 \tag{8}$$

다음과 같이 가정하시오:

• 진동 에너지만 ΔH 에 기여한다.

- H₂, HD, D₂의 *k* 값들은 동일하다.
- H의 질량은 1 Da이고 D의 질량은 2 Da이다.

평형인 시스템에서 H_2, HD, D_2의 몰비는 온도에 의존한다. 여기서, Δ_{D_2} 는 D_2의 몰비의 변화로 정의한다.

$$\Delta_{\mathsf{D}_2} = \frac{R_{\mathsf{D}_2}}{R_{\mathsf{D}_2}^*} - 1 \tag{9}$$

여기서, R_{D_2} 는 샘플에서의 $\frac{[D_2]}{[H_2]}$ 이고, $R_{D_2}^* \vdash T \to +\infty$ 에서의 $\frac{[D_2]}{[H_2]}$ 이다. $T \to +\infty$ 에서 동위원소의 분포는 무작위적 (random)이 된다는 것을 주목해야 한다.

A.3반응식 (4)의 K가 0.300인 온도에서 동위원소 교환이 평형 상태일 때, D의 자연적 존재비를
이용하여 Δ_{D_2} 를 <u>계산하시오</u>.
D와 H의 자연적 존재비는 각각 1.5576×10^{-4} 과 $1 - 1.5576 \times 10^{-4}$ 이라고 가정하시오.10pt

Q2-4 Korean (Korea)

일반적으로, 온도가 감소하면 이중 치환 아이소토폴로그(한 분자 안에 두 개의 무거운 동위원소 원자들을 가지고 있는 것)의 몰비는 증가한다. 분자량이 44와 47인 CO₂ (아래에 CO₂[44]와 CO₂[47]로 나타내었다) 분자들의 몰비를 생각해 보자. Δ_{47} 은 다음과 같이 정의한다:

$$\Delta_{47} = \frac{R_{47}}{R_{47}^*} - 1 \tag{10}$$

여기서 R_{47} 은 샘플에서의 $\frac{[CO_2[47]]}{[CO_2[44]]}$ 이고, $R_{47}^* \stackrel{\circ}{\in} T \rightarrow +\infty$ 일 때의 $\frac{[CO_2[47]]}{[CO_2[44]]}$ 이다. 탄소와 산소 원자들의 자연적 존재 비는 아래와 같고, 여기에 나오지 않은 동위원소들은 무시한다.

	¹² C	¹³ C
자연적 존재비	0.988888	0.011112

	¹⁶ O	¹⁷ O	¹⁸ O
자연적 존재비	0.997621	0.0003790	0.0020000

 Δ_{47} 의 온도 의존성이 다음과 같이 측정되었다. 여기서 T는 K 단위의 절대온도이다.

$$\Delta_{47} = \frac{36.2}{T^2} + 2.920 \times 10^{-4} \tag{11}$$

A.4남극 해저에서 얻은 화석 플랑크톤의 R_{47} 이 4.50865×10^{-5} 이었다. 이 R_{47} 을 이용하여9pt온도를 **유추하시오**.이 온도는 플랑크톤이 살았던 시기의 대기 온도라고 해석한다. 계산할 때 $CO_2[47]$ 의 가장
존재비가 큰 아이소토폴로그만을 고려하시오.

KOR-1 C-3 Q-1

Lambert-Beer 법칙

총점의 8%								
문제 A.1 B.1 B.2 합 :								
배점	10	6	6	22				
점수								

이 문제에서 광학 셀과 용매에 의한 흡수는 무시한다. 모든 용액과 기체는 25 °C로 일정하게 유지된다.

파트 A

HA와 NaA를 이용하여 수용액 **X**를 준비한다. 수용액 **X**에서 [A⁻], [HA], [H⁺]의 농도는 각각 1.00×10^{-2} mol L⁻¹, 1.00×10^{-3} mol L⁻¹, 1.00×10^{-4} mol L⁻¹이다. 이 농도들 사이의 관계는 다음 산염기 평형식을 만족한다.

$$\mathsf{HA} \rightleftharpoons \mathsf{A}^{-} + \mathsf{H}^{+} \qquad \qquad K = \frac{[\mathsf{A}^{-}][\mathsf{H}^{+}]}{[\mathsf{HA}]} \tag{1}$$

파트 A에서 광경로 길이(optical path length)는 *l* 이다. 희석 과정에서 밀도 변화는 무시한다. 식 (1)을 제외한 다른 화학 반응은 일어나지 않는다고 가정한다.

A.1 파장 λ_1 에서 수용액 X의 흡광도는 A_1 이다. pH = 2.500인 염산(HCl)으로 용액 X를 2배 10pt 묽혀 희석된 용액을 만든다. 묽힌 후에도 파장 λ_1 에서의 흡광도는 여전히 A_1 이다. λ_1 에서 HA와 A⁻의 몰흡광계수가 각각 ε_{HA} 와 ε_{A^-} 일 때, 몰흡광계수 비 $\varepsilon_{HA}/\varepsilon_{A^-}$ 를 **구하시오**.

Q3-2 Korean (Korea)

파트 B

기체 상태에서 다음 평형 반응에 대해 고려해 보자.

$$D \rightleftharpoons 2M$$
 (2)

단면적이 *S*인 투명한 움직일 수 있는 면을 가진 직육면체형 용기가 있다.(아래 그림 참고) 직육면체형 용기에 순수한 기체 D를 채워 압력 *P*인 상태를 만들면 총 압력은 *P*로 유지되면서 평형에 도달한다.

기체의 흡광도 $A = \varepsilon(n/V)l$ 이다.

여기서 ε , n, V, l 은 각각 몰흡광계수, 기체의 몰수, 기체 부피, 광경로 길이이다. 기체 혼합물을 구성하는 모든 기체는 이상기체로 가정한다.

필요한 경우 다음 정의를 사용하시오.

	초기	상태	평형 후		
	D	М	D	М	
부분압력	Р	0	p_{D}	p_{M}	
몰수	n_0	0	n_{D}	n_{M}	
부피	V	0	T	Γ	

B.1 파장 λ_{B1} 에서 초기 상태와 평형 후에 x 방향 $(l = l_x)$ 에서 측정한 기체의 흡광도는 모두 6pt A_{B1} 이다. λ_{B1} 에서 D와 M의 몰흡광계수 ε_{D} 와 ε_{M} 의 비, $\varepsilon_{D}/\varepsilon_{M}$ 를 **구하시오**.

B.2 초기 상태 y 방향 $(l = l_{y0})$ 에서 측정한 기체 흡광도와 평형에 도달한 후 y 방향 $(l = l_y)$ 에서 6pt 측정한 기체 흡광도는 파장 λ_{B2} 에서 모두 A_{B2} 이다. λ_{B2} 에서 $\varepsilon_{D}/\varepsilon_{M}$ 를 **구하시오**.

아연(Zn)의 산화환원 화학

총점의 11 %									
문제	A.1	A.2	B.1	B.2	B.3	B.4	합계		
배점	6	5	4	3	5	9	32		
점수									

아연은 오랜 기간 황동 및 강철 합금 재료로 사용되고 있다. 산업폐수에 존재하는 아연을 정화하기 위해 아연은 침전 반응을 이용하여 분리한다. 얻어진 침전물은 다시 환원시켜 아연 금속 형태로 회수하여 재사용한다.

파트 A

25 °C에서 수산화 아연 Zn(OH)₂(s)의 해리 평형반응식과 평형상수는 식 (1)–(4)에 주어져 있다.

$$\operatorname{Zn}(\operatorname{OH})_2(s) \rightleftharpoons \operatorname{Zn}^{2+}(\operatorname{aq}) + 2\operatorname{OH}^-(\operatorname{aq})$$
 $K_{\operatorname{sp}} = 1.74 \times 10^{-17}$ (1)

$$\operatorname{Zn}(\operatorname{OH})_2(s) \rightleftharpoons \operatorname{Zn}(\operatorname{OH})_2(\operatorname{aq})$$
 $K_1 = 2.62 \times 10^{-6}$ (2)

$$\operatorname{Zn}(\operatorname{OH})_2(\mathsf{s}) + 2\operatorname{OH}^-(\mathsf{aq}) \rightleftharpoons \operatorname{Zn}(\operatorname{OH})_4^{2-}(\mathsf{aq}) \qquad \qquad K_2 = 6.47 \times 10^{-2} \tag{3}$$

$$H_2O(I) \rightleftharpoons H^+(aq) + OH^-(aq) \qquad \qquad K_w = 1.00 \times 10^{-14}$$
(4)

KOR-1 C-4 Q-2

아연의 용해도 S (포화 수용액에 있는 아연의 농도)는 식 (5)에 주어져 있다.

$$S = [Zn^{2+}(aq)] + [Zn(OH)_2(aq)] + [Zn(OH)_4^{2-}(aq)]$$
(5)

A.1 식 (1)-(4)에 주어진 반응이 평형에 도달했을 때, [Zn²⁺(aq)], [Zn(OH)₂(aq)], 6pt [Zn(OH)₄²⁻(aq)] 중에서 [Zn(OH)₂(aq)]가 가장 큰 값을 가지는 pH 범위를 **구하시오.**

A.2	pH = 7.00인 Zn(OH) ₂ (s) 포화 수용액을 준비하고 여과하였다. 이 여과액에 NaOH를 첨	5pt
	가하여 pH를 12.00로 증가시켰다. pH를 7.00에서 12.00으로 증가시킬 때 침전된 아연의	
	몰 퍼센트(molar percentage)를 계산하시오.	
	단, 부피와 온도 변화는 무시한다.	

파트 B

아래 식과 같이 회수한 수산화 아연을 가열하여 산화 아연을 얻는다.

$$Zn(OH)_2(s) \rightarrow ZnO(s) + H_2O(I)$$
(6)

그리고 산화 아연을 수소 기체로 환원시켜 금속 아연을 얻는다.

$$ZnO(s) + H_2(g) \rightarrow Zn(s) + H_2O(g)$$
(7)

B.1수소 기체의 압력을 1 bar로 유지하면서 반응 (7)을 진행시키기 위해서는 생성된 수증기의
부분압력을 감소시켜야 한다. 300 °C에서 반응 (7)이 진행될 수 있는 수증기의 최대 부분압
력을 **구하시오**.
여기서, 300 °C 에서 모든 기체들이 1 bar일 때 산화 아연과 수증기의 깁스 생성
에너지(Gibbs formation energy)는 각각 $\Delta G_{ZnO}(300^{\circ}C) = -2.90 \times 10^{2} \, kJ \, mol^{-1}$,
 $\Delta G_{H_{\circ}O}(300^{\circ}C) = -2.20 \times 10^{2} \, kJ \, mol^{-1}$ 이다.4pt

금속 아연은 금속-공기 배터리의 음극(anode) 물질로 사용된다. 이 전극은 Zn와 ZnO로 구성되어 있다. 이 전지는 다음 산화환원 반응을 이용하여 전기를 생성하며, 25 °C, 1 bar에서 *E*°의 기전력(electromotive force, e.m.f.)을 가진다.

$$\operatorname{Zn}(s) + \frac{1}{2}O_2(g) \to \operatorname{ZnO}(s)$$
 $E^\circ = 1.65 \,\mathrm{V}$ (8)

B.2 아연-공기 배터리를 20 mA에서 24시간 동안 방전시켰다. 배터리의 음극(anode)의 질량 3pt 변화를 <u>구하시오</u>.

KOR-1 C-4 Q-3

후지산

B.3 주위 환경에 따른 아연-공기 배터리의 e.m.f. 변화를 고려해 보자. 후지산 정상의 온도와 5pt 높이가 각각 −38°C (2월), 3776 m일 때, 후지산 정상에서의 기전력(e.m.f.)를 **구하시오**.

단, 높이 $h[\mathbf{m}]$ 와 온도 $T[^{\circ}\mathbf{C}]$ 에서의 대기압은 다음 식과 같다.

$$P\left[\mathsf{bar}\right] = 1.013 \times \left(1 - \frac{0.0065h}{T + 0.0065h + 273.15}\right)^{5.257} \tag{9}$$

대기 중 산소의 몰 비율은 21%이다. -38°C, 1 bar에서 반응식 (8)의 깁스 에너지 변화는 $\Delta G_{ZnO}(-38°C) = -3.26 \times 10^2 \text{ kJ mol}^{-1}$ 이다.

KOR-1 C-5 Q-1

신비한 규소

	총점의 12%									
문제	A.1	A.2	A.3	A.4	B.1	B.2	B.3	합계		
배점	9	7	6	10	5	15	8	60		
점수										

규소는 탄소와 같은 14족 원소이지만, 이들의 특성은 크게 다르다.

파트 A

탄소-탄소 삼중 결합과 달리, R^1 –Si \equiv Si– R^1 (R: 유기 치환체) 규소-규소 삼중 결합은 반응성이 매우 크다. 예를 들어, 이 화합물은 에틸렌과 반응하여 사각 고리(four-membered ring)를 가진 고리형 생성물을 형성한다.

R¹–Si ≡ Si–R¹을 알카인(R²–C ≡ C–R²)과 반응하면, 사각 고리화합물 A가 초기 중간체로 생성된다. A를 다른 알카인 (R²–C ≡ C–R²) 분자와 추가로 반응시키면 이성질체인 B와 C가 생성된다. 이 두 화합물은 모두 벤젠류 고리형 콘쥬게이션 구조이며, '다이실라벤젠(disilabenzene)'이라 한다. 이 다이실라벤젠(disilabenzene)은 육각 고리(six-membered ring)를 가지며, (R¹–Si)₂(R²–C)₄로 나타낼 수 있다.

KOR-1 C-5 Q-2

$R^1-Si\equiv Si-R^1 + R^2-C\equiv C-R^2 \longrightarrow A \xrightarrow{R^2-C\equiv C-R^2} B + C$

 13 C NMR 분석 결과, 육각 고리 골격에 있는 Si $_2C_4$ 에 해당하는 시그널은 B의 경우에는 2개, C의 경우에는 1개가 관찰 된다.

- A.1 R¹, R², Si와 C를 표기하면서 A, B, C 구조를 <u>그리시오</u>. 가능한 공명 구조 중 하나만 그리면 9pt 된다.
- **A.2** 아래 그림 1의 불포화 시스템의 수소화 반응 엔탈피 변화(ΔH)를 고려하여 벤젠과 **C**(7pt $R^1 = R^2 = H$ 인 경우)의 방향족 안정화 에너지(aromatic stabilization energy, ASE) 절대값을 <u>**구하시오**</u>.

C의 자일렌 용액을 가열하면, 이성질화(isomerization)되어 D와 E의 평형 혼합물이 생성된다. 몰비는 50.0 °C에서 D : E = 1 : 40.0 이고, 120.0 °C에서 D : E = 1 : 20.0 이다.

A.3 D가 E로 변환하는 과정의 ΔH를 <u>계산하시오</u>.
 단, ΔH는 온도에 의존하지 않는다고 가정한다.

6pt

C에서 D와 E로의 이성질화 반응은 σ -결합은 끊어지지 않고, π -결합이 σ -결합으로 변하면서 진행된다. ¹³C NMR 분석 결과, D와 E의 Si₂C₄ 골격에 해당하는 시그널은 D의 경우에는 1개, E의 경우에는 2개가 관찰된다. D의 Si₂C₄ 골격에는 삼각 고리는 없지만, E는 한 개의 변을 공유하는 2개의 삼각 고리를 가진다.

A.4 R¹, R², Si와 C를 표기하면서 **D**와 **E**의 구조를 **그리시오**.

10pt

파트 B

규소는 플루오린(F)처럼 전기음성도가 큰 원소와 함께 배위수가 큰 화합물(> 4개의 치환체)을 형성할 수 있다. 플루 오린화 금속 화합물(metal fluorides)이 플루오린화 반응(fluorination) 시약으로 자주 사용되는 것처럼 배위수가 큰 플루오린화 규소 화합물(silicon fluorides)도 플루오린화 반응 시약으로 사용된다.

 Na_2SiF_6 을 이용한 CCl₄의 플루오린화 반응은 다음과 같이 진행된다.

• Na₂SiF₆ 용액의 표준화:

·준비물

F 수용액: 0.855 g의 Na₂SiF₆(188.053 g mol⁻¹)가 녹아있는 수용액(전체 부피: 200 mL).

G 수용액: 6.86 g의 Ce₂(SO₄)₃(568.424 g mol⁻¹)가 녹아있는 수용액(전체 부피: 200 mL).

·실험과정

수용액 **F**(50.0 mL)에 **G** 용액을 한 방울씩 떨어뜨리면서 침전 적정을 수행한다. 이때 지시약으로 Ce³⁺와 결합할 수 있는 자일렌 오렌지 지시약을 사용한다. 수용액 **G**(18.8 mL)를 가했을 때, 용액의 색은 노란색에서 자홍색으로 변한다. 생성된 침전물은 Ce³⁺ 이온을 포함하는 이성분 화합물이고, 생성된 규소 화합물은 Si(OH)₄가 유일하다.

B.1 여기서, Na₂SiF₆와 Ce₂(SO₄)₃사이의 균형 반응식을 <u>쓰시오</u>.

5pt

Q5-4 Korean (Korea)

• Na₂SiF₅와 CCl₄의 반응:

(아래 과정에서 증발 등에 의한 물질의 손실은 무시한다.)

Na₂SiF₆(*x* [g])를 CCl₄(500.0 g)에 첨가하고 밀폐된 내압 반응 용기에서 300 ℃까지 가열하였다.

반응하지 않은 Na₂SiF₆와 생성된 NaCl은 여과하여 제거하였다. 여과액을 CCl₄로 희석하여 총 부피가 1.00 L가 되도록 하였다(용액 H). 용액 H의 ²⁹Si과 ¹⁹F NMR 스펙트럼은 SiF₄가 유일한 규소 화합물임을 보였다. ¹⁹F NMR 스펙트럼에는 SiF₄외에도 CFCl₃, CF₂Cl₂, CF₃Cl 및 CF₄에 해당하는 시그널이 관찰되었다(표 1 참조). ¹⁹F NMR 스펙트럼에서 적분비 는 플루오린 핵의 수에 비례한다.

KOR-1 C-5 Q-4

<u> </u>								
¹⁹ F NMR 데이타	CFCl ₃	CF_2Cl_2	CF ₃ Cl	CF ₄				
적분 비	45.0	65.0	18.0	2.0				

SiF₄는 식(8)과 같이 가수분해되어 H₂SiF₆를 형성한다.

$$3SiF_4 + 2H_2O \rightarrow SiO_2 + 2H_2SiF_6 \tag{8}$$

용액 H(10 mL)를 과량의 물에 가하여 SiF₄를 완전히 가수분해시켰다. 물 층을 분리한 후, 가수분해되어 생성된 H₂SiF₆를 중화시켜 완전히 Na₂SiF₆(용액 **J**)로 전환하였다.

반응 초기 단계에서 여과에 의해 제거된 미반응 Na₂SiF₆와 NaCl의 침전물(밑줄 친 부분)을 물에 완전히 용해시켜 수용액(용액 **K**; 10.0 L)을 얻었다.

그런 다음 용액 G를 사용하여 추가로 침전 적정을 수행하였고, 적정 결과 적정의 종말점까지 소모된 용액 G의 양은 아래와 같다:

·용액 **J** 전체: 61.6 mL.

·용액 K 100 mL: 44.4 mL.

여기서 NaCl 과 SiO₂의 공존하더라도 침전 적정에는 영향을 미치지 않는다.

B.2 반응 용기에서 생성된 NaCl의 질량(밑줄 친 정보)을 **구하고**, 출발 물질로 사용된 Na₂SiF₆의 15pt 질량 (x [g])을 **계산하시오.**

B.3 출발 물질로 사용된 CCl₄의 77.8%가 반응하지 않았다. 생성된 CF₃Cl의 질량을 계산하시오. 8pt

Π	1
+++	
	_

KOR-1 C-6 Q-1

전이 금속의 고체 화학

총점의 13%											
문제	A.1	A.2	A.3	B.1	B.2	B.3	B.4	C.1	C.2	C.3	합계
배점	6	3	3	6	4	4	4	5	5	5	45
점수											

사쿠라지마 섬의 화산

파트 A

일본은 전 세계적으로 화산이 가장 많은 국가 중 하나이다. 규산염 광물이 마그마로부터 결정화할 때, 마그마에 있는 전이 금속 이온(M^{n+})중 일부는 규산염 광물에 포함된다. M^{n+} 는 산소 이온(O^{2-})과 배위 결합하여 마그마에서는 4 배위의 정사면체(T_d) 구조를 가지며, 규산염 광물에서는 6 배위의 정팔면체(O_h) 구조를 가진다. 이 두 가지는 모두 고스핀 전자 배치를 가진다. 규산염 광물과 마그마 사이의 M^{n+} 의 분포 계수(distribution coefficient) D는 다음과 같이 표현할 수 있다.

$$D = \frac{[M]_s}{[M]_1}$$

여기서 $[M]_s$ 과 $[M]_l$ 는 각각 규산염 광물과 마그마에 존재하는 M^{n+} 의 농도이다. 아래의 표는 Cr^{2+} 와 Mn^{2+} 의 D 값을 나타낸 것이다.

	Cr ²⁺	Mn ²⁺
D	7.2	1.1

 O_h 장에서 Mⁿ⁺의 d 오비탈의 에너지 분리와 결정장 안정화 에너지(crystal-field stabilization energy)를 각각 Δ_0 와 CFSE⁰라 하자. T_d 장에서는 각각 Δ_{τ} 와 CFSE^T라 하자.

- A.1 Cr^{2+} , Mn^{2+} , Co^{2+} 의 $|CFSE^{O}-CFSE^{T}| = \Delta CFSE = \Delta_{O}$ 단위로 <u>계산하시오</u>: 6pt $\Delta_{T} = 4/9\Delta_{O}$ 로 가정한다.
- A.2 아래에 나타낸 직교 좌표계에 ΔCFSE / $Δ_0$ 에 대한 lnD를 표시하면 선형 관계가 관찰된다. 3pt Co²⁺의 D를 <u>구하시오</u>.

금속 산화물 MO(M: Ca, Ti, V, Mn 및 Co)는 암염(rock-salt) 구조로 결정화하는데, 여기서 Mⁿ⁺는 *O*_h기하 구조의 고스핀 전자 배치를 가진다. 이러한 산화물의 격자 엔탈피는 이온의 반지름과 전하량에 기반한 쿨롱 상호작용에 의해 주로 결정되고, *O*_h장에서 생기는 Mⁿ⁺의 CFSE의 영향도 일부 받는다.

	CaO	TiO	VO	MnO	CoO
(a)	3460	3878	3913	3810	3916
(b)	3460	3916	3878	3810	3913
(C)	3460	3913	3916	3810	3878
(d)	3810	3878	3913	3460	3916
(e)	3810	3916	3878	3460	3913
(f)	3810	3913	3916	3460	3878

Q6-3 Korean (Korea)

파트 B

La³⁺와 Cu²⁺를 모두 포함하는 혼합 산화물 **A**는 그림 1에 나타낸 것처럼 정방정계(tetragonal) 단위 세포로 결정화한다. 팔면체 [CuO₆] 에서, Cu–O의 z축 결합 길이(l_z)는 x-축 결합 길이(l_x) 보다 길고, [CuO₆]는 정상적인 O_h 기하 구조로부터 뒤틀려있다. 이러한 뒤틀림은 e_g 오비탈($d_{x^2-y^2}$ 및 d_{z^2})의 축퇴(미분화, degeneracy)를 없애준다.

KOR-1 C-6 Q-3

그림 1.

이가산(diacid)인 스퀘아르 산($C_4H_2O_4$, squaric acid)을 포함하는 묽은 암모니아 수용액에 금속 염화물을 섞으면 착물 B가 생성된다. 착물 B를 열분해 하면 A를 합성할 수 있다. 건조한 상태에서 B의 열분해 과정은 200 °C까지는 결정수 (crystallization water)의 방출로 인하여 29.1%의 중량 손실(weight loss)을 보이고, 700 °C까지 CO₂의 방출로 인해 추가적인 중량 손실을 나타낸다. B에서 A가 형성되는 동안의 총 중량 손실은 63.6%이다. 이 열분해 과정에서는 물과 CO₂만 방출된다.

B.1	A와 B의 화학식을 <u>쓰시오</u> .	6pt
B.2	그림 1을 이용하여 l_x 와 l_z 를 <u>계산하시오</u> .	4pt
B.3	그림 1에서 뒤틀린 [CuO ₆] 팔면체 내부의 Cu ²⁺ 에 대하여 답안지에 있는 점선으로 된 상자에	4pt
	전자 배치를 <u>그리고</u> , (i)과 (ii)에 해당되는 e _g 오비탈(d _{x²-y²} 과 d _{z²})의 이름을 각각 <u>쓰시오</u> .	•

A는 절연체이다. 한 개의 La³⁺이 Sr²⁺로 치환되면, 결정 격자에 한 개의 정공이 생성되어 전기 전도성이 생긴다. 그 결과, Sr²⁺가 도핑된 A는 38 K 이하에서 초전도성을 나타낸다. A의 치환 반응이 일어날 때, 2.05×10^{27} holes m⁻³ 만큼의 정공이 생성되었다.

 B.4
 이 치환 반응에서 몰비 기준으로 La³⁺대비 치환된 Sr²⁺의 퍼센트를 <u>계산하시오</u>. 구성 이온
 4pt

 의 결합 수와 결정 구조는 치환 반응에 의해 변하지 않는다.

파트 C

Cu₂(CH₃CO₂)₄는 2개의 Cu²⁺에 배위된 4개의 CH₃CO₂⁻로 구성되어 있다(그림 2A). Cu₂(CH₃CO₂)₄는 4개의 CH₃CO₂⁻의 탄소 원자들을 통과하는 2개의 축과 2개의 Cu²⁺를 통과하는 한 개의 축을 가지며, 이들은 서로 수직이고 높은 수준의 구조적 대칭성을 보인다. CH₃CO₂⁻대신 다이카복실레이트 리간드를 사용하면 "케이지 착물"이 형성된다. 케이지 착물 Cu₄(L1)₄는 평면형 다이카복실레이트 L1(그림 2B)과 Cu²⁺로 구성된다 (그림 2C). 그림 2B에서 화살표로 표시된 2개의 카복실레이트의 배위 방향 사이의 각도 θ 는 케이지 착물의 구조를 결정한다. L1의 θ 는 0°이다. 그림 2에는 수소 원자가 표시되어 있지 않다.

그림 2

KOR-1 C-6 Q-5

Q6-6 Korean (Korea)

KOR-1 C-6 Q-6

아연 착물 $Zn_4O(CH_3CO_2)_6$ 는 4개의 사면체(tetrahedral) Zn^{2+} , 6개의 $CH_3CO_2^-$ 및 1개의 O^{2-} 를 포함한다(그림 3A). $Zn_4O(CH_3CO_2)_6$ 에서 O^{2-} 는 중심에 위치하며, $CH_3CO_2^-$ 의 탄소 원자들을 통과하는 세 개의 축은 서로 수직이다. $CH_3CO_2^-$ 대신 p-벤젠다이카복실레이트(그림 3B, L3, $\theta = 180^\circ$)를 사용하면, Zn^{2+} 클러스터(cluster)가 서로 연결되어 "다공성 배위 고분자"라고 불리는 결정성 고체(X)를 형성한다(그림 3C). X는 조성이 $[Zn_4O(L3)_3]_n$ 이며, 나노 크기의 구멍을 갖는 입방 결정 구조이다. 하나의 구멍은 그림 3D에서 구로 표시되고, 각 사면체 Zn^{2+} 클러스터는 그림 3C와 3D에서 진한 회색의 다면체(polyhedron)로 표시되었다. 그림 3에서 수소 원자들은 생략하였다.

그림 3

- **C.2** X는 한 변의 길이가 a이고, 밀도가 0.592 g cm⁻³인 입방 단위 세포를 가진다(그림 3c). a를 5pt [cm] 단위로 <u>계산하시오</u>.
- C.3X는 상당한 수의 구멍을 포함하고 있으며 1 bar, 25 °C에서 1 g의 X는 구멍에 3.0×10^2 5ptmL의 CO2 가스를 수용할 수 있다. 구멍 한 개당 수용 가능한 평균 CO2 분자 수를 **구하시오**.

KOR-1 C-7 Q-1

비-벤젠류 방향족성 탐구하기

총점의 13%								
배점	A.1	A.2	A.3	B.1	합계			
점수	5	2	19	10	36			
점수								

노조에 교수(1902–1996)는 지금은 유기화학에서 잘 알려진 비-벤젠류 방향족 화합물 연구 분야를 개척하였다.

사진 제공: 토호쿠 대학

파트 A

리니아리이폴리아논(lineariifolianone)은 금불초(Inula linariifolia)에서 추출된 독특한 구조의 천연물이다. 발렌센 [valencene (1)]에서 1단계 변환을 하면 2가 생기고, 3을 중간체로 하는 3단계 변환을 통해 케톤 4를 얻는다. 에레모필 렌[eremophilene (5)]은 이와 같은 4단계 변환을 통해 6으로 전환된다.

KOR-1 C-7 Q-2

금불초(Inula linariifolia)

A.1 필요하다면 입체화학을 명확히 표시하면서 2와 6의 구조를 <u>그려라</u>.

KOR-1 C-7 Q-3

다음은 케톤 4를 에스터 15로 바꾸는 과정이다. 화합물 8(분자량: 188)은 7에 있는 모든 입체중심(stereocenter)을 그대로 가지고 있다. 화합물 9와 10은 각각 다섯 개의 입체중심을 가지고 있고 탄소-탄소 이중 결합은 가지고 있지 않다. ¹⁸O 으로 표지된-리니아리이폴리아논들 13과 14를 11과 12로부터 각각 합성할 때, H₂¹⁶O 대신 H₂¹⁸O를 사용한다고 가정하자. 화합물 13과 14는 서로 동위원소 이성질체(isotopomer) 관계이다. 동위원소 표지를 무시하면, 화합물 13과 14는 모두 입체화학까지 동일한 화합물 15를 생성한다.

5

Q7-6

파트 B

화합물 19는 아래와 같이 합성한다. 비-벤젠류 방향족성 성질로 인해 화합물 19는 알코올의 활성제(activator)로 사용할 수 있는데, 20은 이온-쌍(ion-pair) 중간체 21을 거쳐 22로 바뀐다. 비록 중간체 21이 생성되는 것은 NMR로 관찰할 수 있지만, 점차 분해되어 18과 22를 생성한다.

KOR-1 C-8 Q-1

다이내믹한 유기 분자들의 카이랄성

총점의 11%						
문제	A.1	A.2	A.3	B.1	B.2	합계
배점	9	3	7	3	4	26
점수						

파트 A

연속적인 오쏘-연결상태를 가진 다고리 방향족 탄화수소를 [n]카보헬리센([n]carbohelicenes)이라 한다(여기서 n은 육각고리의 개수를 나타낸다)(아래를 보시오). [4]카보헬리센([4]carbohelicene; **[4]C**)은 아래와 같이 광반응 경로를 통해 얻은 중간체(**Int.**)를 아이오딘으로 산화시킴으로써 효과적으로 얻을 수 있다.

이 광반응은 아래의 예와 유사하게 진행된다.

주의: 문제 8의 경우, 답안에 구조를 그릴 때 여기 문제에 그려진 카보헬리센(carbohelicene)의 예처럼 단일 결합과 이중 결합이 번갈아 있는 구조로 그리시오. 콘쥬게이션된 π 시스템을 고리 안 동그라미로 그리지 마시오.

A.1 A-C의 구조를 그려라. 입체이성질체는 구분이 되게 그려야 한다. 9pt

A.2 같은 포스포늄 염과 적절한 시작 물질을 사용하여 [5]카보헬리센을 만들려고 했으나, [5]카 3pt 보헬리센은 아주 소량만 생기고 [5]카보헬리센보다 분자량이 2 Da 작은 화합물 D가 생겼다. D의 ¹H NMR 화학적 이동값(chemical shift)이 아래 나열되어 있다. 화합물 D의 구조를 그려라.
 [D (δ, ppm in CS₂, r.t.), 8.85 (2H), 8.23 (2H), 8.07 (2H), 8.01 (2H), 7.97 (2H), 7.91 (2H)]

[5]- 그리고 더 큰 [n]카보헬리센들은 나선형 카이랄성을 가지는데, 이 헬리센들의 거울상 이성질체 사이의 변환은 상온에서 매우 느리다. [n]카보헬리센들의 카이랄성은 아래 그림과 같이 (M) 또는 (P)로 정의된다.

n이 4보다 큰 [n]카보헬리센의 거울상 이성질체들은 요시오 오카모토 교수에 의해 개발된 카이랄 칼럼 크로마토그래피를 사용하여 분리해낼 수 있다.

사진 제공: 일본 상 재단

KOR-1 C-8 Q-3

다중 헬리센은 헬리센 유사 구조를 두 개 이상 지닌 분자들을 말한다. 다중 헬리센들의 나선형 카이랄성을 고려해보면, 여러 개의 입체이성질체가 존재함을 알 수 있다. 예를 들어, 화합물 **E**는 한 분자 안에 세 개의 [5]카보헬리센 유사 부분 구조를 가지고 있다. 그 입체이성질체 중의 하나를 아래와 같이 (P, P, P)로 표시할 수 있다.

 A.3
 1,2-다이브로모벤젠을 니켈-중개 삼합체화 반응을 시키면 트라이페닐렌(triphenylene)이 7pt 생성된다. 같은 반응을 F의 거울상 이성질체 중의 하나인 (P)-F에 적용하면, 다중 헬리센 G(C₆₆H₃₆)가 얻어진다. 이 반응이 일어나는 동안 입체이성질체 간의 변환은 일어나지 않는다고 가정하고, 생길 수 있는 G의 <u>모든</u> 입체이성질체들을 중복되지 않도록 주의하여 <u>식별하라.</u>
 7pt 1

 단, 위 상자 안의 예시에서 정의된 것처럼, 한 가지 이성질체는 본보기로 번호 표기와 함께 가이랄성을 표시한 구조 전체를 그려야 한다; 나머지 이성질체들은 위치 번호와 M 과 P 표기를 마츠며서 나영하며 되다. 예를 들어 F의 나머지 의체 이성질체들은 (1, 2, 3) = (P

표기를 맞추면서 나열하면 된다. 예를 들어 E의 나머지 입체 이성질체들은 (1, 2, 3) = (P, M, P), (P, M, M), (P, P, M), (M, M, M), (M, M, P), (M, P, P), (M, P, M)로 나열할 수 있다.

3pt

Part B

B.1

수마넨(sumanene)은 2003년 일본에서 처음 보고된 그릇 모양의 탄화수소이다. "수마넨"이란 이름은 해바라기를 뜻하는 산스크리트-힌두어인 "수만(suman)"에서 유래되었다.

KOR-1 C-8 Q-4

수마넨은 고리-열림과 고리-닫힘 복분해 반응으로 이루어진 일련의 반응으로 합성하였다.

중간체 I의 구조를 그려라 (입체화학을 표시할 필요는 없다).

루테늄 촉매(Ru*)를 이용한 전형적인 복분해 반응은 아래와 같다.

 B.2
 광학활성이 있는 전구체 J에서 시작하여 같은 일련의 반응을 시키면 광학활성을 가진 수마넨
 4pt

 유도체 K가 얻어진다. J에 있는 입체중심은 이 복분해과정 동안에 뒤집히지 않고 유지된다.
 입체화학을 잘 나타내면서 K의 구조를 <u>그려라</u>.

KOR-1 C-9 Q-1

캡슐을 좋아하는 것과 싫어하는 것

총합의 10%						
문제	A.1	A.2	A.3	A.4	A.5	합계
배점	13	2	2	3	3	23
점수						

착한 아이라면 이런 장난을 치지 않겠지만, 테니스 공의 봉합 부분을 뜯어내면 두 개의 U-자 모양 조각으로 분리할 수 있다.

여기에 착안하여 서로 다른 크기의 U-모양 분자인 화합물 1과 2를 합성하였다. 화합물 3은 1의 대조군으로 만들었고, 이 화합물들의 캡슐화 거동을 조사하였다.

2의 합성 경로는 아래와 같다. 화합물 9의 원소 분석 조성은 질량비로 C; 40.49%, H; 1.70%, O; 17.98%이다.

KOR-1 C-9 Q-3

A.1 4-9의 구조를 <u>그려라</u>; 입체화학은 무시해도 된다. p-메톡시벤질기(p-methoxybenzyl)는 13pt 위의 반응식들에서 보이는 것처럼 전체 구조를 그리지 말고 치환기로 "PMB"라고 표기하라.

1의 질량 분석 스펙트럼에서는 이합체(1_2)에 해당하는 이온 피크가 뚜렷하게 관찰되는 반면, 3의 질량 분석 스펙트럼에서 3_2 에 해당하는 이온 피크는 관찰되지 않았다. 1_2 용액의 ¹H NMR 스펙트럼을 통해 1에서 유래하는 모든 NH 양성자는 화학적으로 동등(chemically equivalent)한 것으로 관찰되었고, 그것들의 화학적 이동값(chemical shift)은 3의 NH 양성자의 화학적 이동값과 현저하게 다름을 알았다. 이 결과는 1에 있는 NH 부분들과 또 다른 1에 있는 원자 X들 사이에 수소 결합을 이루어 이합체 캡슐을 형성함을 보여준다.

A.2	1에 X로 적절한 모든 원자들에 <mark>동그라미를 치시오</mark> .	2pt

A.3 이합체 캡슐(1₂)에 있는 수소 결합의 <u>개수를 써라</u>.

2pt

Q9-4 Korean (Korea)

이합체 캡슐 $\mathbf{1}$ ($\mathbf{1}_2$)에는 내부 공간이 있어서 적당한 소분자 Z를 그 안에 가둘 수 있다. 이 현상은 다음과 같은 식으로 표현할 수 있다.

$$\mathsf{Z} + \mathbf{1}_2 \to \mathsf{Z} @ \mathbf{1}_2 \tag{1}$$

 $Z = \mathbf{1}_2$ 내부에 캡슐화하는 과정의 평형 상수는 아래와 같이 주어진다:

$$K_{\mathsf{a}} = \frac{[\mathsf{Z}@\mathbf{1}_2]}{[\mathsf{Z}][\mathbf{1}_2]} \tag{2}$$

분자가 캡슐 내에 가둬지는 현상은 NMR 분광학으로 모니터링할 수 있다. 예를 들어 C_6D_6에서 찍은 1_2 의 NMR 스펙트럼 시그널은 CH₄를 넣기 전과 후가 다르다.

화합물 2 역시 견고하고 더 큰 이합체 캡슐(2_2)을 형성한다. 다른 모든 조건들은 동일하게 하고, 세 가지 용매 (C_6D_6 , C_6D_5F , 및 C_6D_6/C_6D_5F 혼합 용매)에서 2_2 의 ¹H NMR 스펙트럼을 측정하였다. 이들 각 용매에서 2의 H^a 양성자에 해당하는 화학적 이동값들이 아래에 정리되어 있고, 이 값들 이외에 2의 H^a에 해당하는 피크는 관찰되지 않았다. 캡슐 내부에는 가능한 최대 개수의 용매 분자가 항상 가두어져 있고, 채워진 캡슐의 종류에 따라 각각다른 피크를 나타낸다고 가정하라.

용매	δ (ppm) of H ^a
C ₆ D ₆	4.60
C ₆ D ₅ F	4.71
C ₆ D ₆ / C ₆ D ₅ F	4.60, 4.71, 4.82

A.4 각 H^a 피크를 나타내는 2_{2} 캡슐들에 가두어진 $C_{6}D_{6}$ 와 $C_{6}D_{5}F$ 분자들의 개수를 쓰시오.

3pt

KOR-1 C-9 Q-5

 C_6D_6 용매에서 측정한 ¹H NMR로부터 2_2 안에 1-아다만테인카복실산(AdA) 한 분자가 가둬질 수 있음을 알았고, 아래와 같이 표현된 회합 상수(K_a)는 여러 온도에서 측정되었다. 여기서 [solvent@ 2_2]는 한 개 또는 그 이상의 용매 (solvent) 분자들을 가둔 캡슐의 농도를 의미한다.

$$K_{\mathsf{a}} = \frac{[\mathsf{Z}@\mathbf{2}_2]}{[\mathsf{Z}][\mathsf{solvent}@\mathbf{2}_2]} \tag{3}$$

이와 비슷하게, 여러 온도에서 식(2)에 주어진 CH_4 와 1_2 사이의 회합 상수 K_a 들도 C_6D_6 용매에서 ¹H NMR 측정을 통해 결정하였다. 이 두 가지 회합 상수들의 (ln K_a 대 1/T) 그래프가 아래와 같다.

 1_2 에는 C₆D₆ 분자가 갇혀있지 않다. 직선 Ⅱ에서, 엔트로피 변화(ΔS)는 (1)이고 엔탈피 변화(ΔH)는 (2)이므로 직선 Ⅱ가 나타내는 캡슐화과정의 원동력(driving force)은 (3)이다. 따라서, 직선 I은 (4)에 해당하며, 직선 Ⅱ는 (5)에 해당한다.

A.5	괄호	괄호 (1)-(5)에 들어갈 적합한 말들을 골라 답안지에 A와 B로 표시하시오 .			
			Δ	D	
			A	В	
		(1)	양수	음수	
		(2)	양수	음수	
		(3)	ΔS	ΔH	
		(4)	1 ₂ 와 CH ₄	2_2 와 AdA	
		(5)	1 ₂ 와 CH ₄	2 ₂ 와 AdA	
			1	1	

